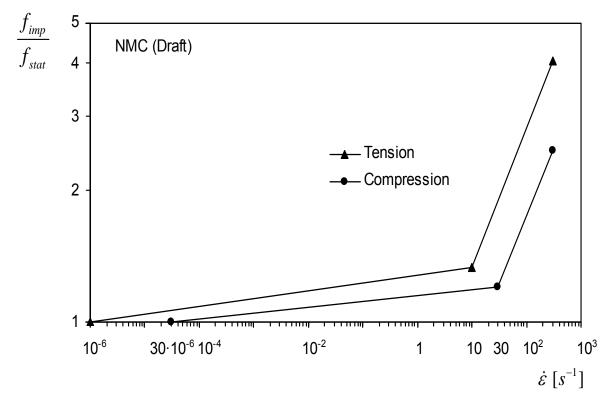
FRACTURE OF CONCRETE AT HIGH LOADING RATES

Introduction



Traffic:	10 ⁻⁶ – 10 ⁻⁴ s ⁻¹
Earthquake:	5x10 ⁻³ – 5x10 ⁻¹ s ⁻¹
Airplane impact:	$5x10^{-2} - 2x10^{0} \text{ s}^{-1}$
Hard impact:	$10^{0} - 5 \times 10^{1} \text{ s}^{-1}$
Hypervelocity impact: 10 ² – 1	0 ⁶ s ⁻¹
Problem: solution of 3D wave	propagation equation for nonlinear media !

Introduction

Two different aspects of the problem:

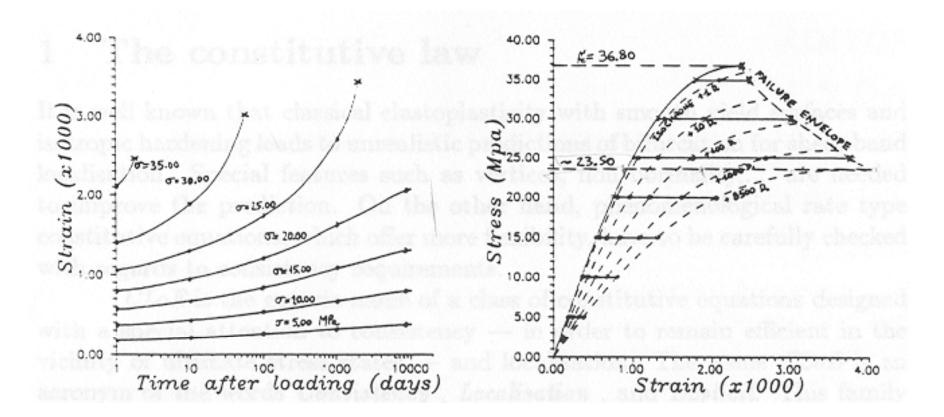
Constitutive law (microstructural phenomena)

- Creep of concrete between cracks creep-fracture interaction or non (very slow loading: < 10⁻⁸ s⁻¹)
- Rate dependent crack growth & viscosity (moderate loading rates: 10⁻⁵ 10¹ s⁻¹)

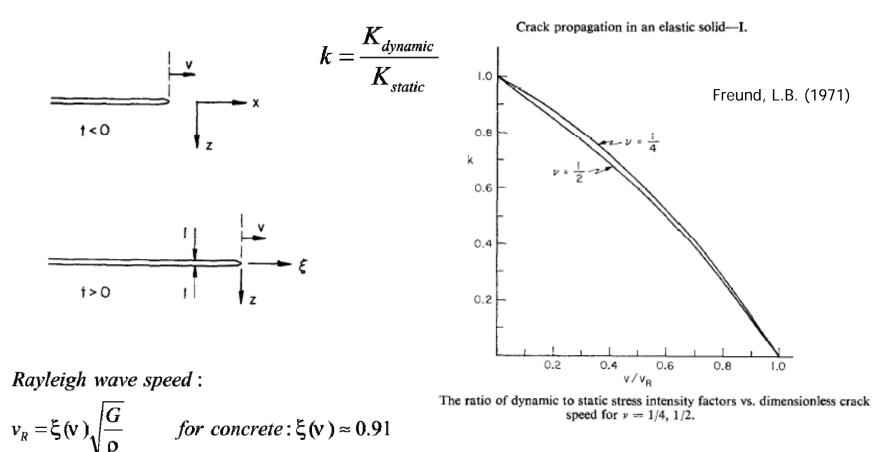
Structural analysis

- Structural inertia (high loading rates impact: > 10¹ s⁻¹)
 - Single & multi-body dynamics
 - Contact (collision)

Very slow loading: creep of bulk material



Rate dependent crack growth



General framework for modeling of rate dependent response

- Continuum mechanics
- Irreversible thermodynamics (isothermal conditions)
- Non-linear fracture mechanics
 - smeared crack approach
 - crack band method
- Basic principles of contact mechanics
- Numerical analysis: standard finite elements

3D static & dynamic finite element analysis (multi-body + contact)

Global equilibrium – Lagrange multipliers for contact problems:

Impenetrability:

$$\mathbf{M}\ddot{\mathbf{u}}_{n} + \mathbf{C}\dot{\mathbf{u}}_{n} + \mathbf{K}\mathbf{u}_{n} + \mathbf{G}_{n+1}^{T}\boldsymbol{\lambda}_{n} = \mathbf{R}_{n}$$
$$\mathbf{G}_{n+1} \{\mathbf{X}_{n+1}\} = \mathbf{0}$$

Strain measure:	Green-Lagrange strain tensor	
Stress tensor:	Co-rotational	
FE formulation:	Update Lagrange, mesh refinement, re-meshing	
Contact:	Lagrange multipliers, friction	
Solution strategy:	Global: explicit FE & Local: implicit contact	

Rate dependent crack growth

For continuum with a number of parallel cohesive cracks:

$$\frac{d\varepsilon}{dt} = \frac{\dot{w}}{s_{cr}} + \frac{\dot{\sigma}}{E} \approx \frac{\dot{w}}{s_{cr}}$$

With: ϵ = average macroscopic strain normal to the crack direction

 s_{cr} = spacing of the parallel cracks

E = Young's modulus of bulk material

According to the rate process theory

(Krausz and Krausz, 1988; Bažant et al., 2000)

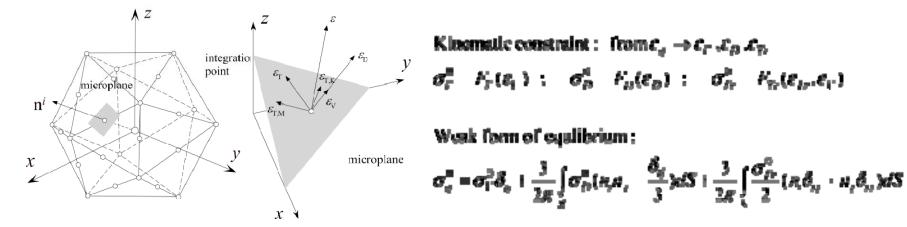
$$\sigma(\varepsilon) = \sigma^0(\varepsilon) \left[1 + C_2 \ln\left(\frac{2\dot{\varepsilon}}{C_1}\right) \right]$$

With:
$$\sigma^{o}$$
 = rate independent stress; $C_1 \& C_2$ = constants

Rate sensitive microplane model

Microplane model – relaxed kinematic constraint

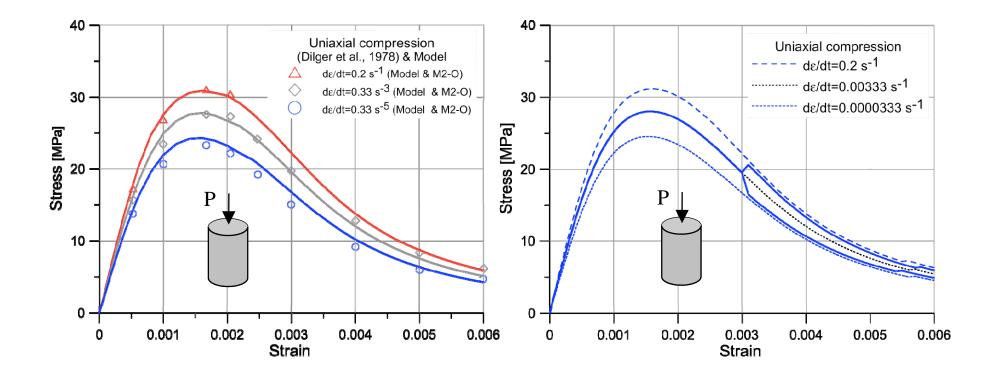
(Ožbolt et al., 2001)



Influence of the strain rate on the microplane stress components (Bažant et al., 2000; Ožbolt et al., 2005)

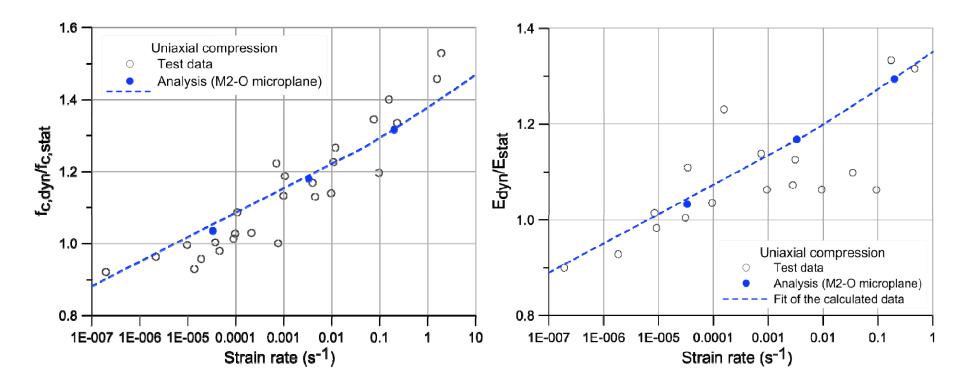
$$\sigma_M(\varepsilon_M) = \sigma_M^0(\varepsilon_M) \left[1 + c_2 \ln\left(\frac{2\dot{\gamma}}{c_1}\right) \right] \quad \text{with} \quad \dot{\gamma} = \sqrt{\frac{1}{2}} \dot{\varepsilon}_{ij} \dot{\varepsilon}_{ij} \quad c_1 = \frac{c_0}{s_{cr}}$$

Calibration of the microplane model constitutive level



Uniaxial compression (moderate loading rate)

Calibration of the microplane model constitutive level



Uniaxial compression (moderate loading rate)

3D FE analysis of concrete cylinder

Geometry:

d = 50, 100, 200 mm; h = 2d

Rate independent material properties :

Young's modulus, E= 30000 MPa

Poisson's ratio, v = 0.18

 $f_t = 2.25 \text{ MPa}$

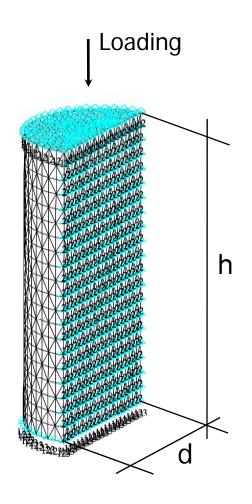
 $f_{c} = 23.0 \text{ MPa}$

 $G_{F} = 0.08 \text{ N/mm}$

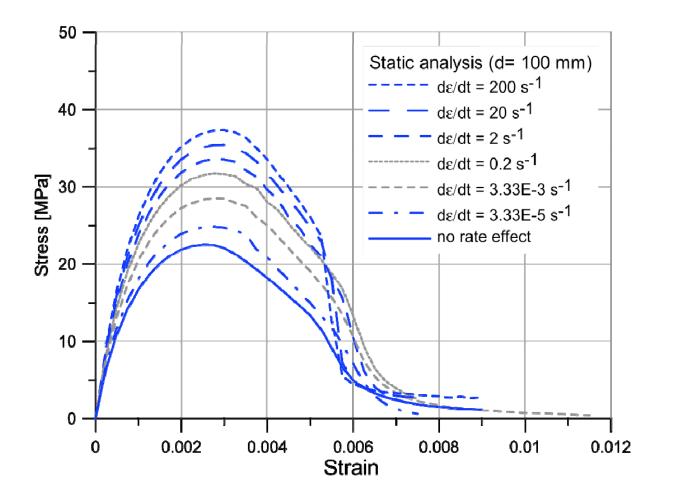
Mass density, $\rho = 2.3 \text{ T/m}^3$

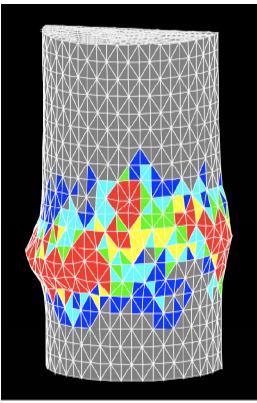
Loading rates dɛ/dt (displacement control):

0 (no rate effect), 3.33⁻⁵, 3.33⁻³, 0.2, 2, 20, 200 s⁻¹



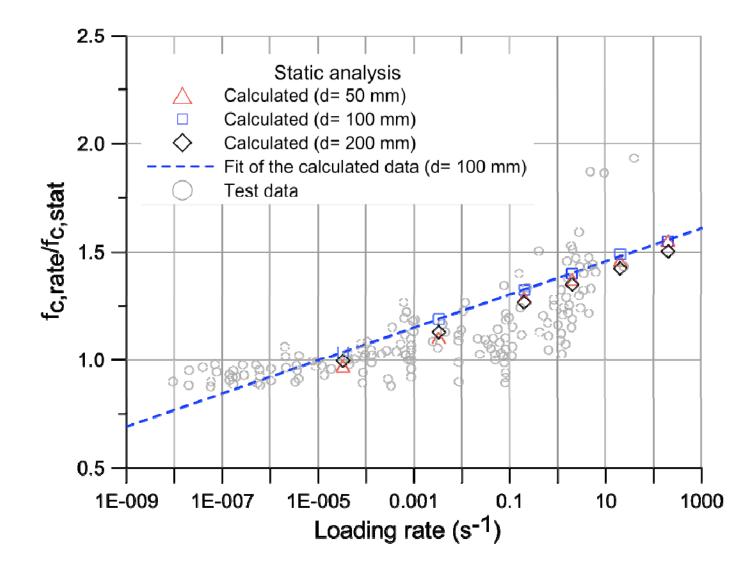
Static analysis





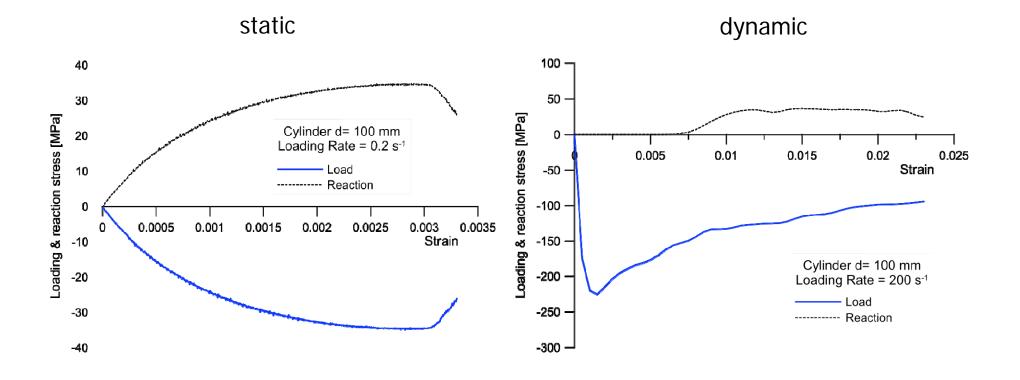
Typical failure mode

Static analysis



14

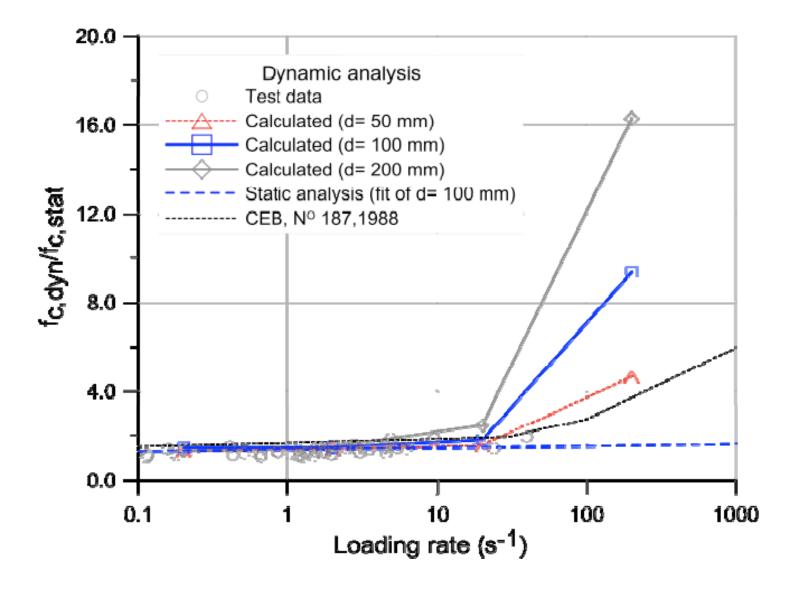
Typical load (reaction) stress-strain curves



<i>d</i> [mm]	0.2 s ⁻¹	2 s ⁻¹	20 s ⁻¹	200 s ⁻¹
50	31.6	33.5	37.7	112
100	35.0	35.2	43.3	225
200	32.0	35.8	59.4	392

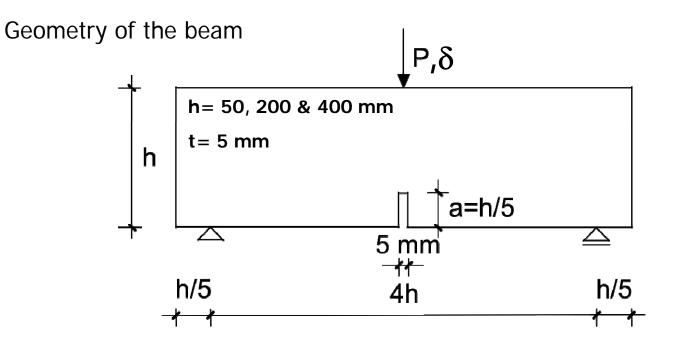
Dynamic analysis - summary of the calculated compressive strengths [MPa]

Strain-rate dependent compressive strength of concrete



16

Three-point bending – notched beam



Rate independent material properties :

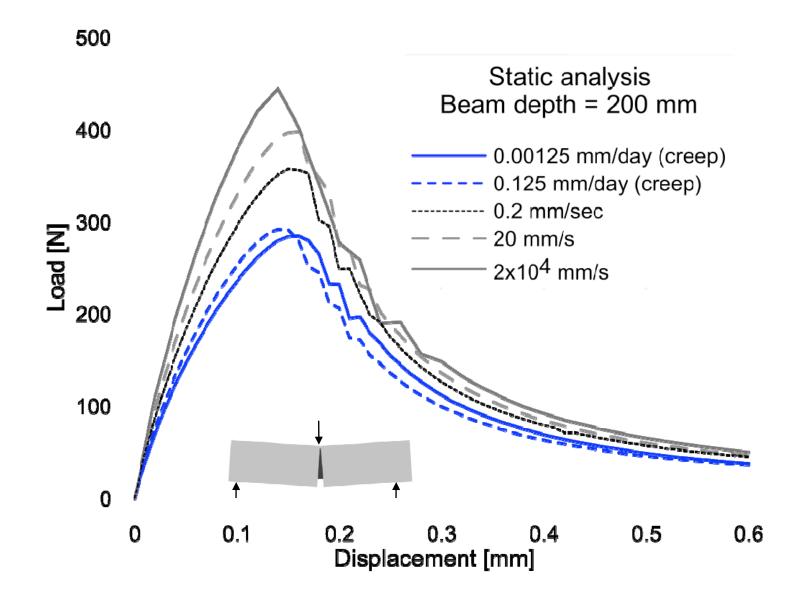
Young's modulus, E_C = 30000 MPa Poisson's ratio, ν_C = 0.18 f_t = 2.0 MPa; f_c = 30.0 MPa; G_F = 0.10 N/mm Mass density, ρ_C = 2.3 T/m³ Loading rates ($\Delta\delta/\Delta t$):

With creep:

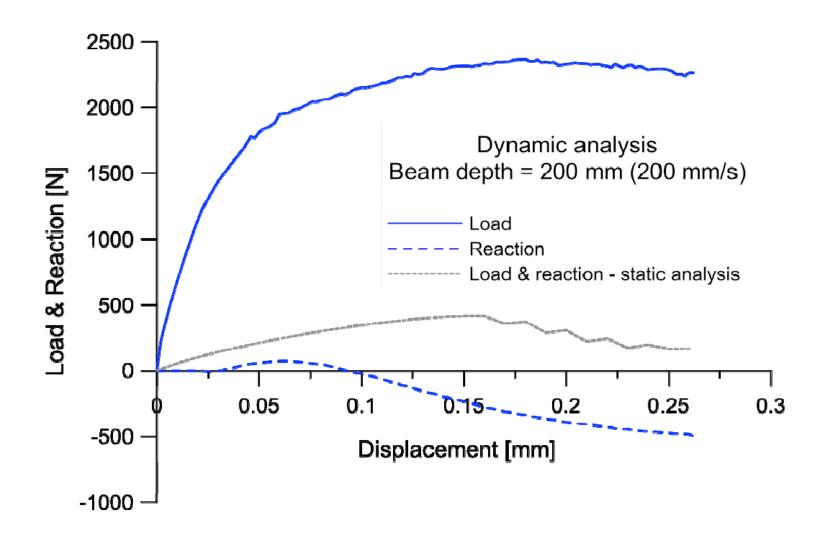
1.25x10⁻³; 1.25x10⁻²; 1.25x10⁻¹ mm/day

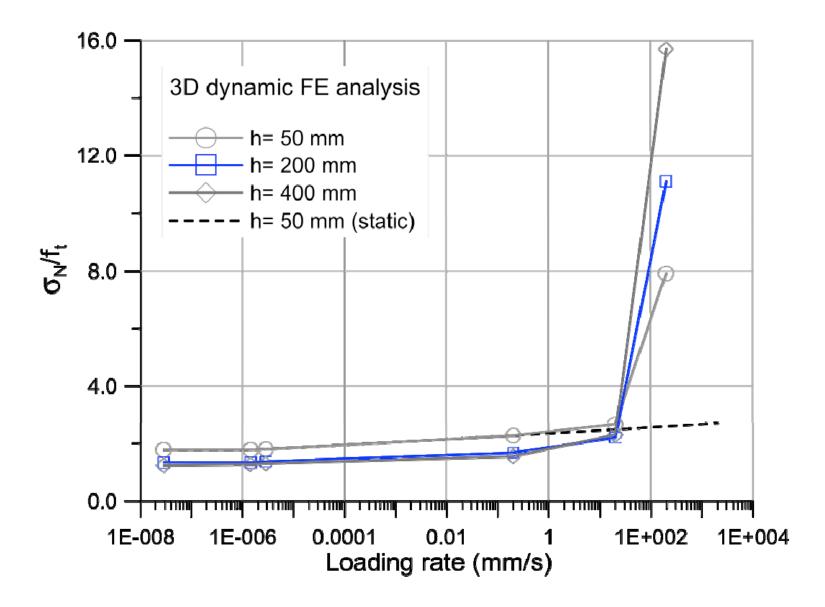
Without creep:

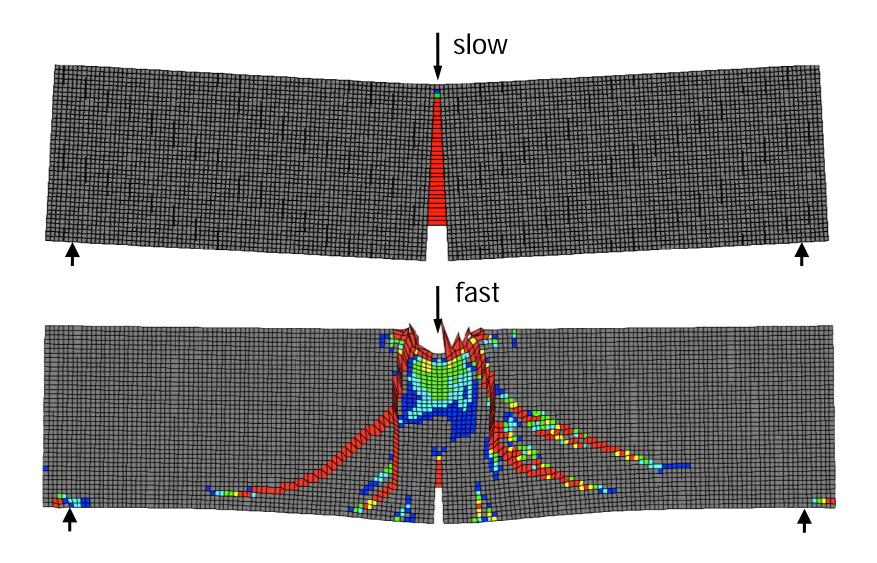
 $0.20 - 2.0x10^4$ mm/sec

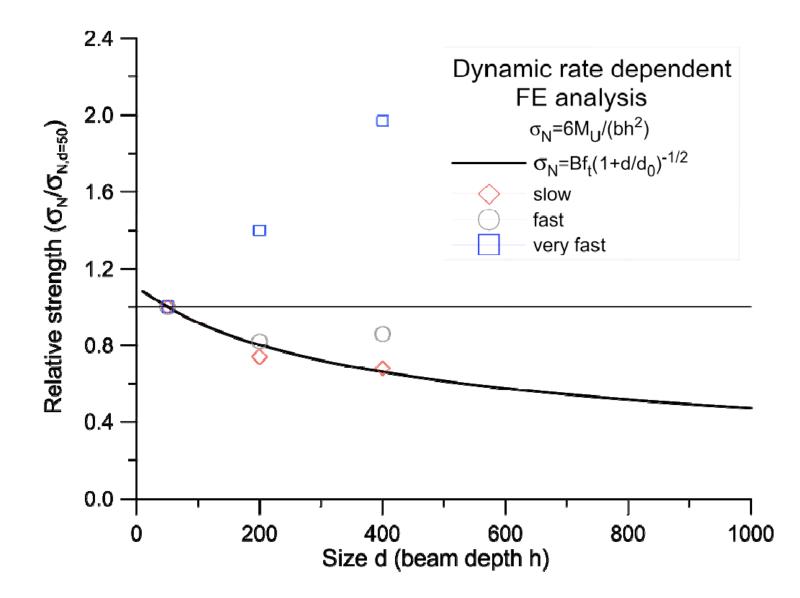


18

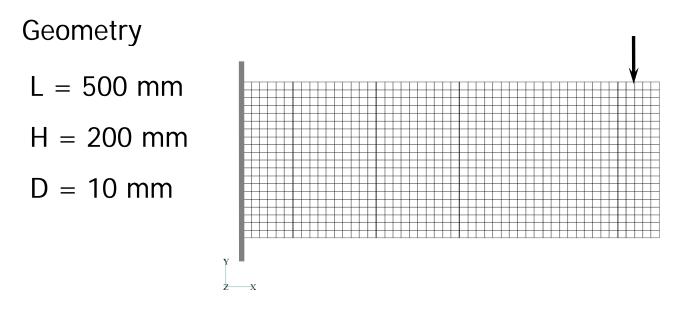








3D FE analysis of cantilever beam

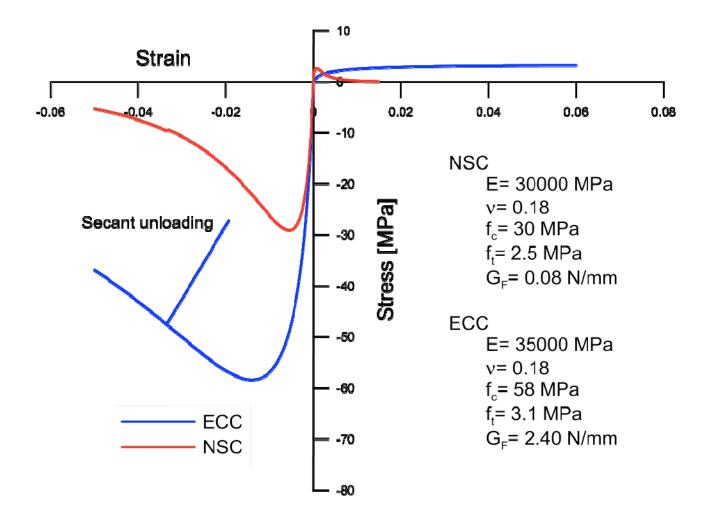


Loading rates (displacement control):

0 (no rate effect), 2, 20, 200, 2 10³, 2 10⁴ mms⁻¹

Material properties

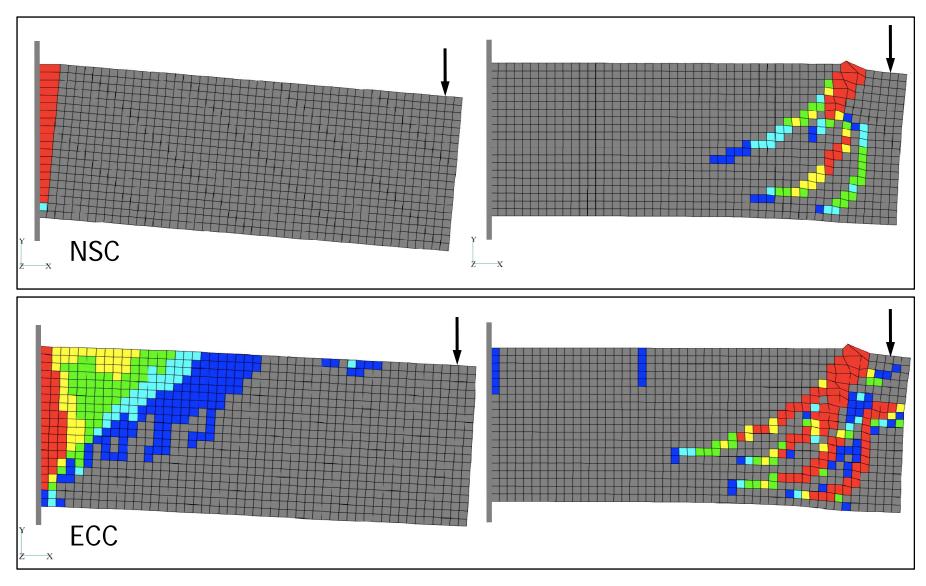
Normal strength concrete (NSC) & high strength fiber reinforced concrete (ECC)



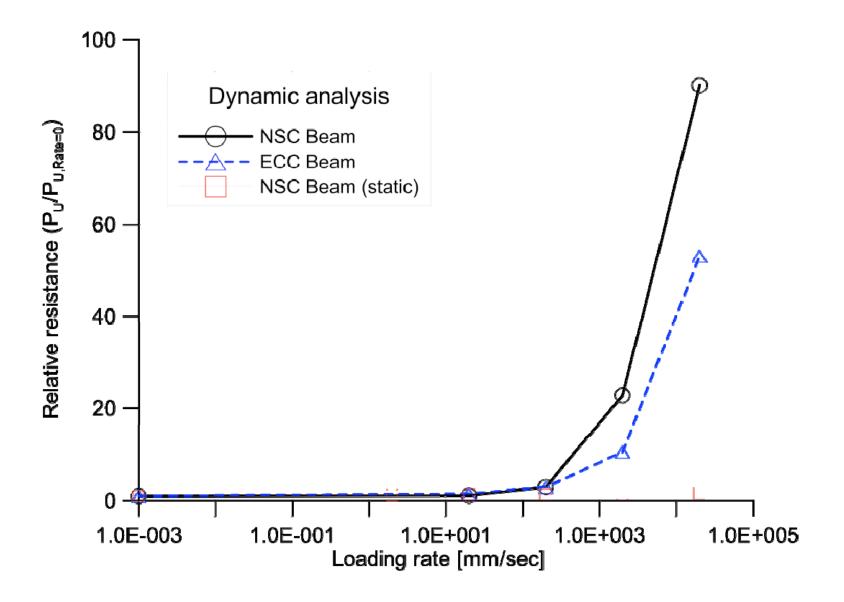
Rate dependent failure modes

slow

fast

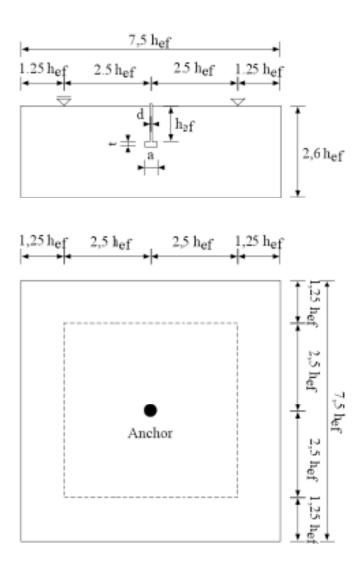


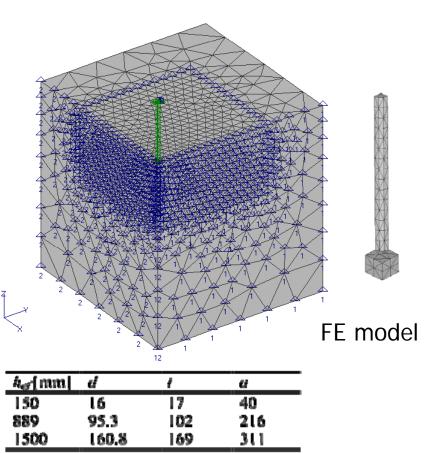
Cantilever beam (NSC & ECC)



Pull-out of the headed stud anchor from a concrete block

Geometry





Rate independent material properties :

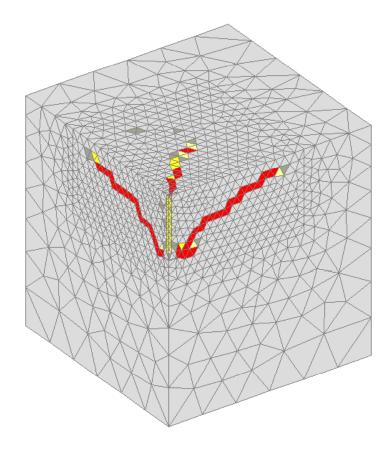
Young's modulus, E_c = 30000 MPa; E_s = 200000 MPa

Poisson's ratio, $v_c = 0.18$; $v_s = 0.33$

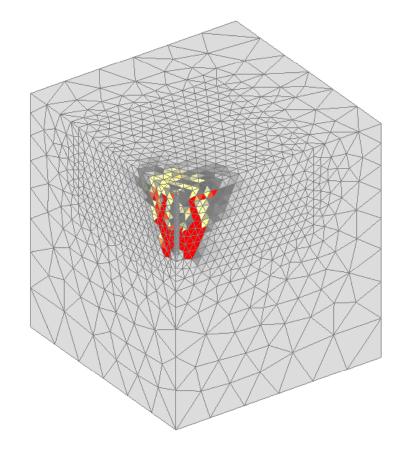
 $f_t{=}$ 2.25 MPa; $f_c{=}$ 23.0 MPa; $G_F{=}$ 0.08 N/mm Mass density, $\rho_C{=}$ 2.3 T/m³; $\rho_S{=}$ 7.4 T/m³

Steel – linear elastic

Rate dependent failure modes (h_{ef} = 150 mm)

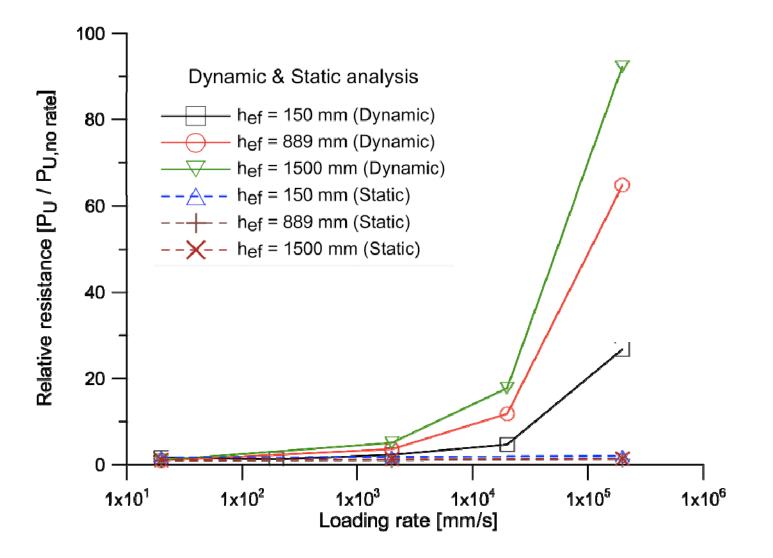


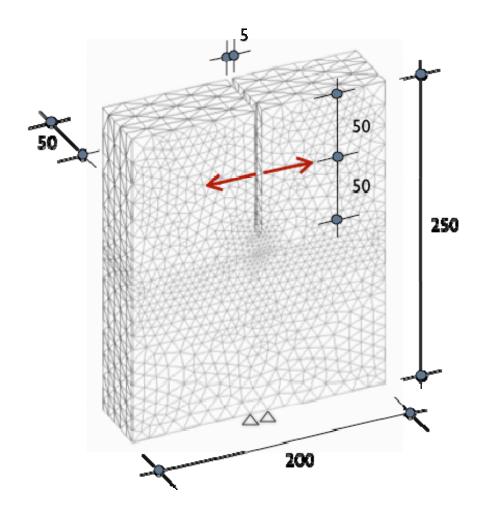
Moderately fast loading (200 mms⁻¹)



Very fast loading (2 10⁵ mms⁻¹)

Pull-out of the headed stud anchor from a concrete block

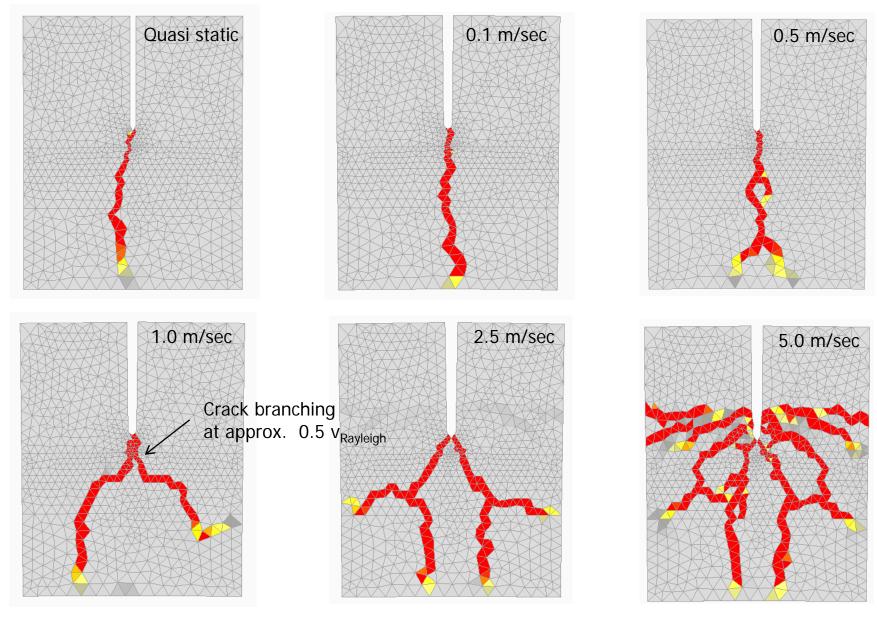


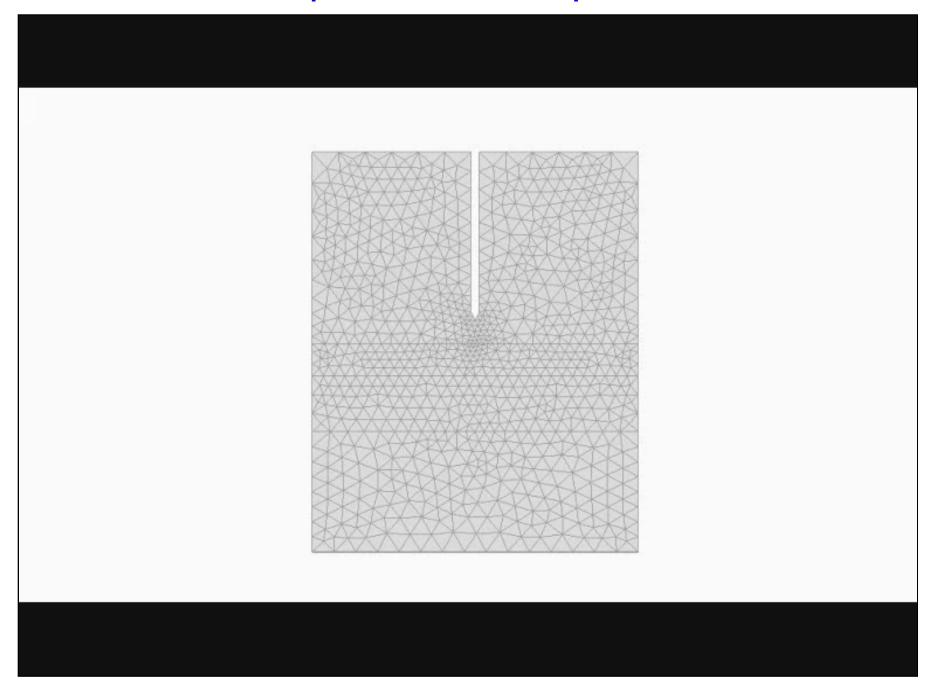


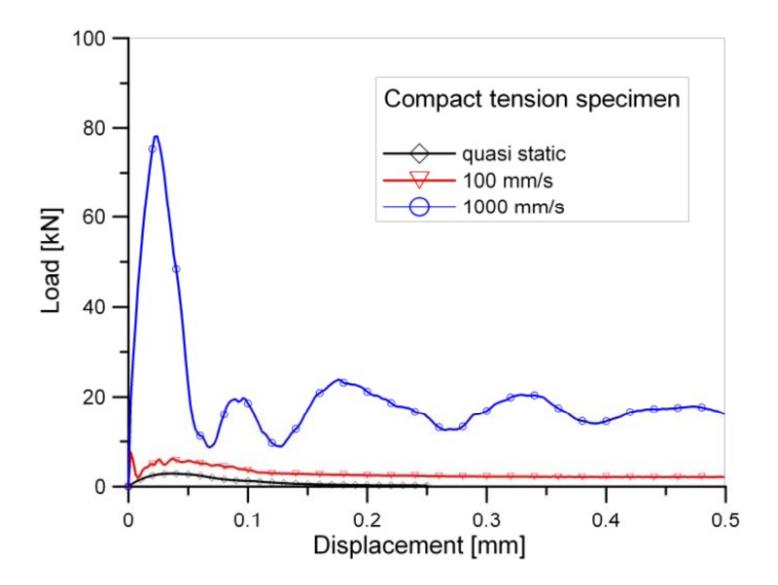
Rate independent material properties :

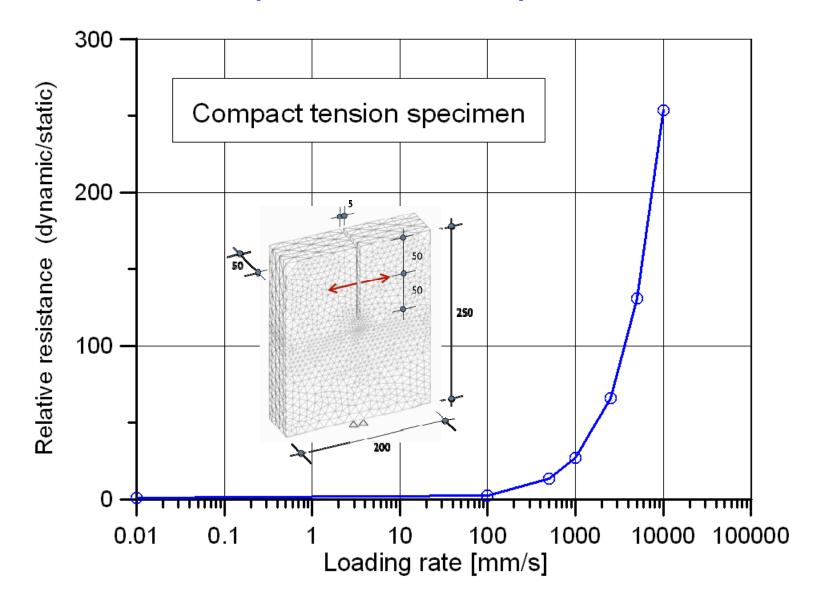
Young's modulus, E_C = 30000 MPa Poisson's ratio, ν_C = 0.18 f_t = 3.5 MPa; f_c = 40.0 MPa; G_F = 0.08 N/mm Mass density, ρ_C = 2.4 T/m³

Loading rates ($\Delta/\Delta t$): Quasi static, 100, 1000 & 1000 mm/sec

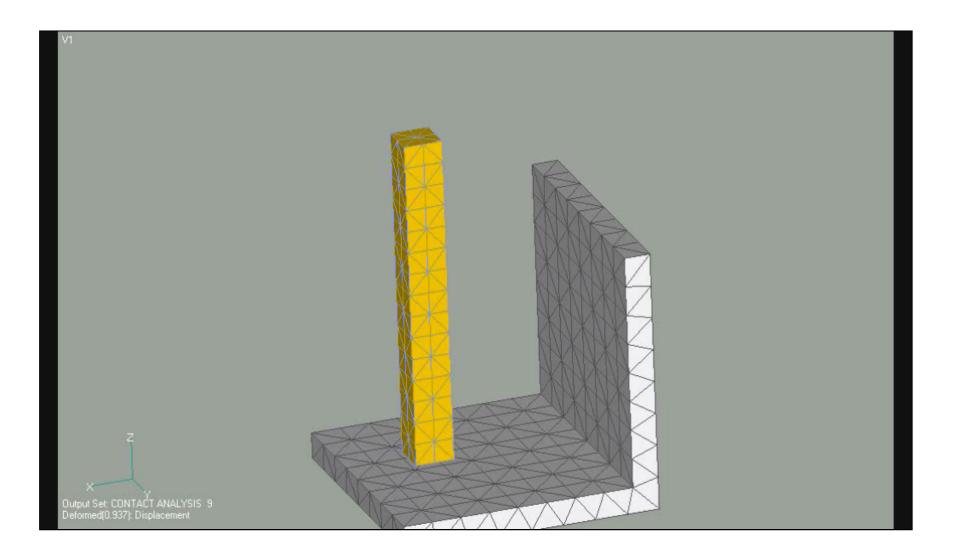




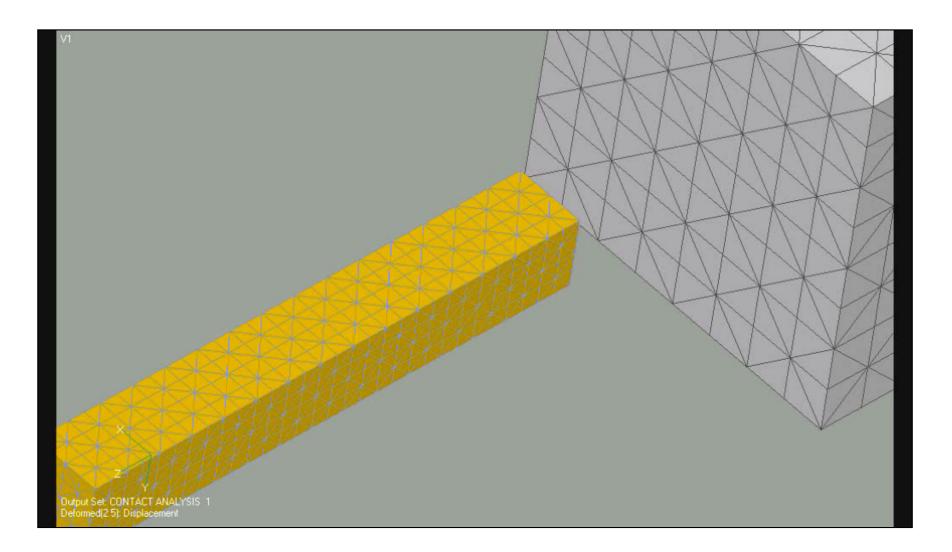




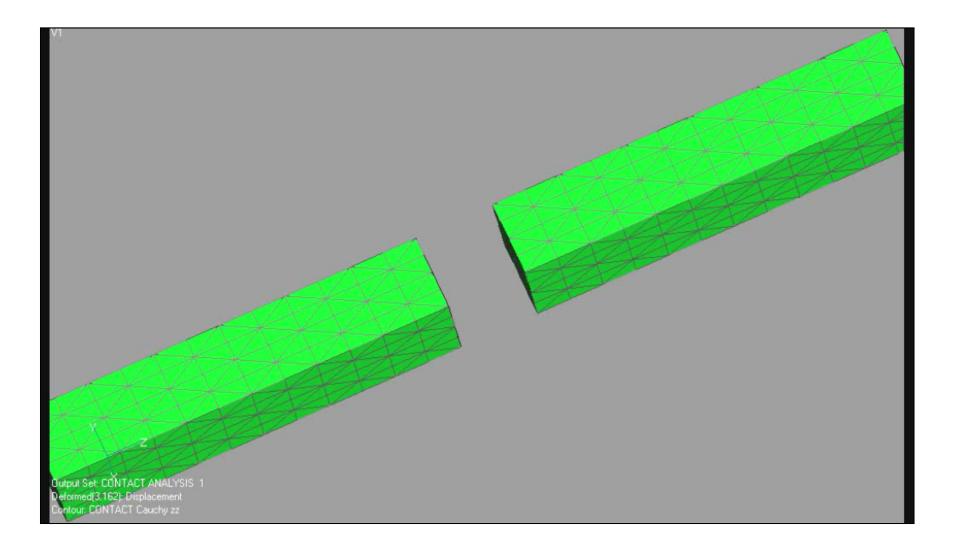
Multi body dynamics & contact



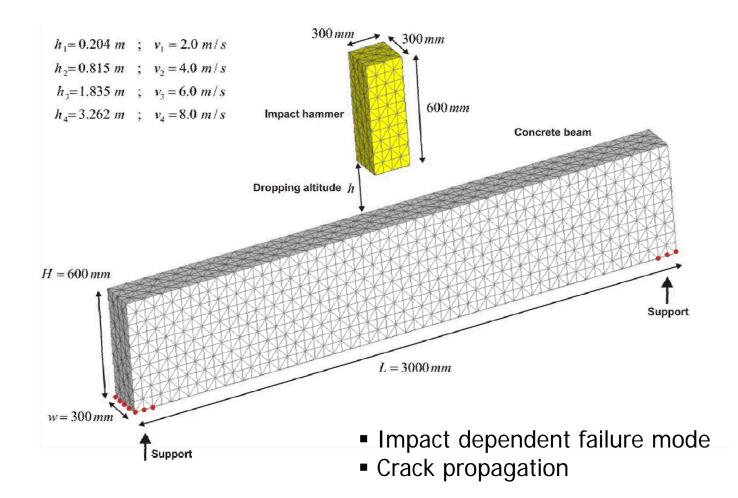
Multi body dynamics & contact



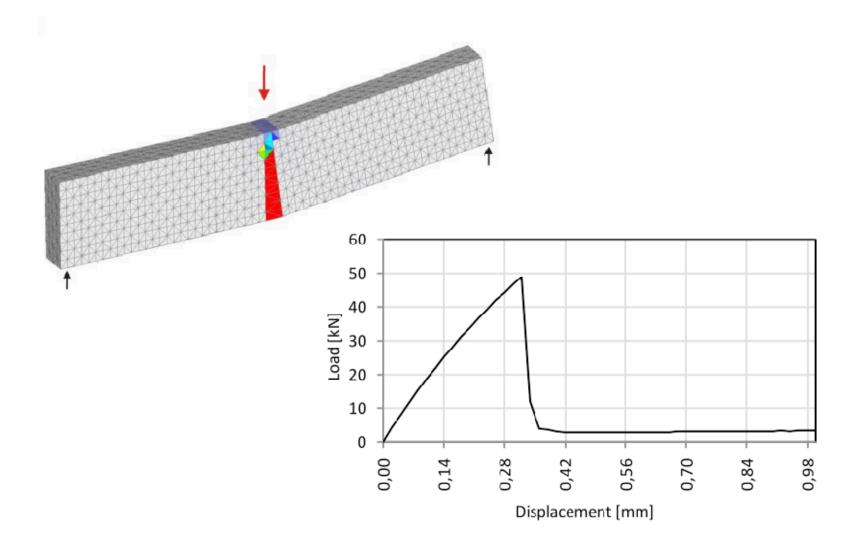
Multi body dynamics & contact



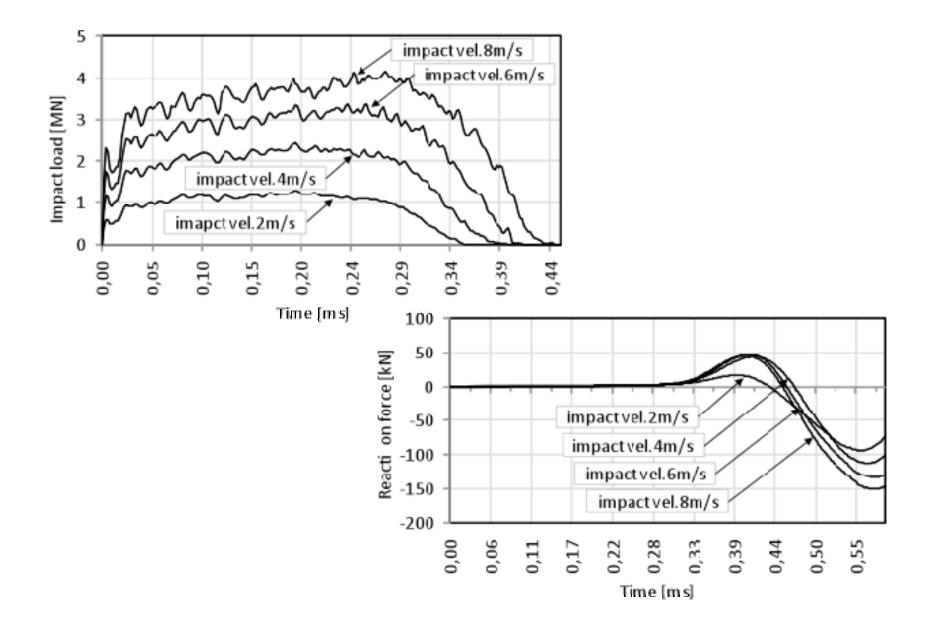
Impact – simply supported plain concrete beam



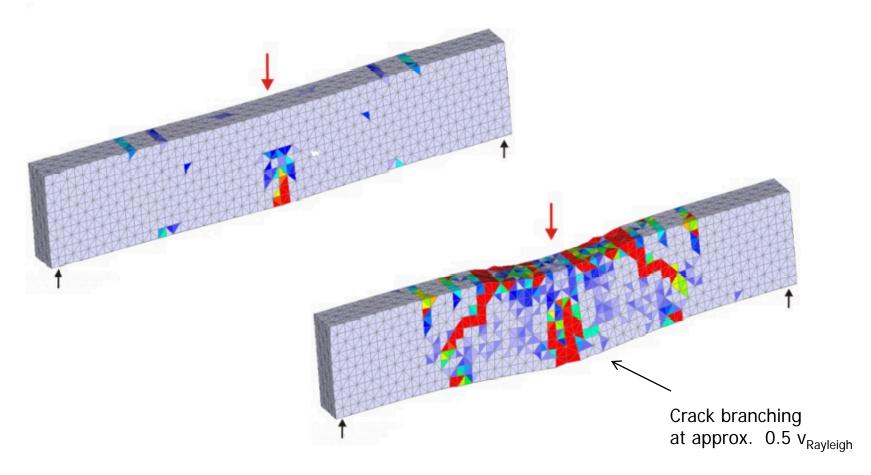
Quasi-static loading



Impact load & reactions

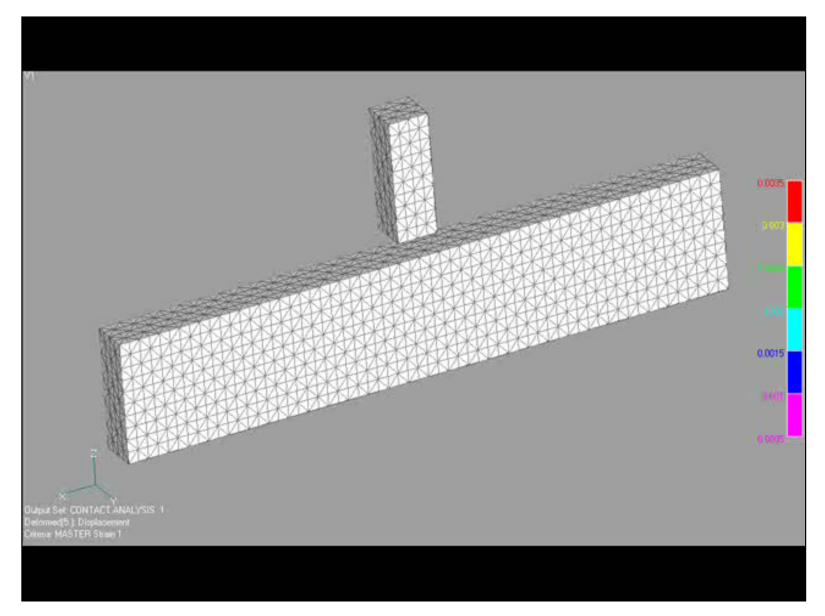


Impact velocity 2 m/s – bending failure

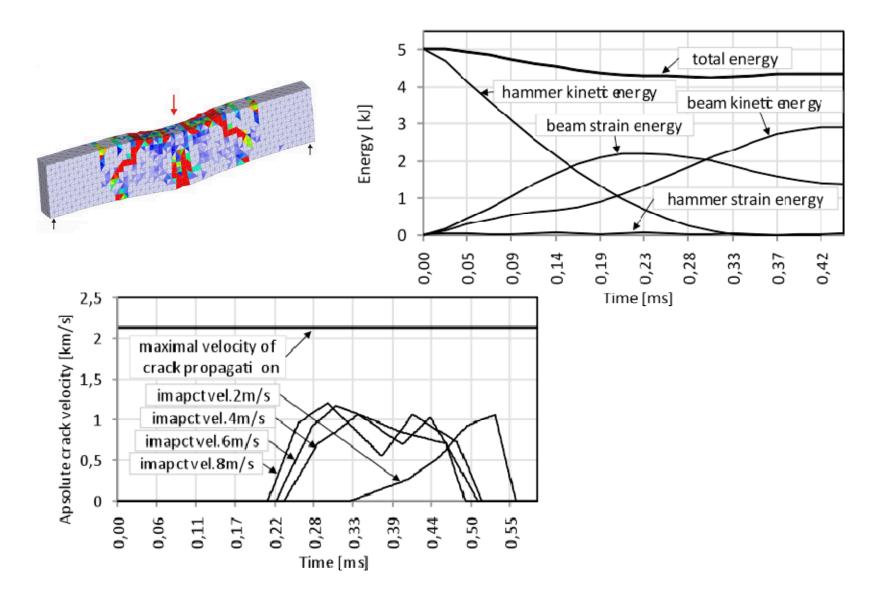


Impact velocity 8 m/s – mixe-mode failure

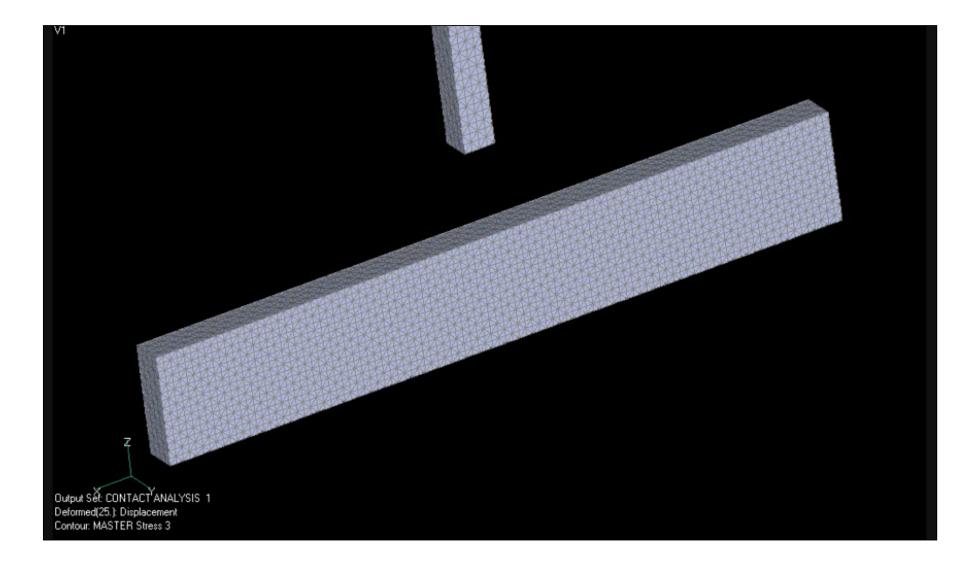
Impact velocity 8 m/s



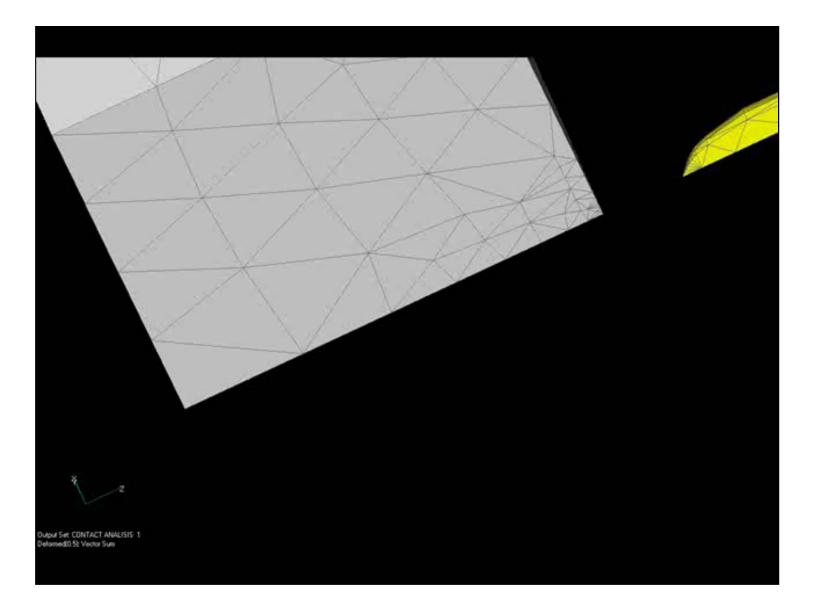
Impact velocity 8 m/s – shear failure



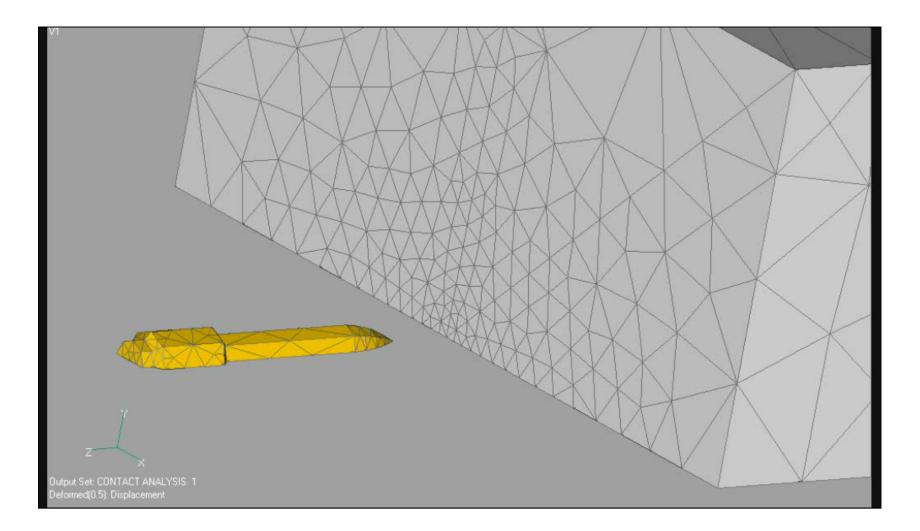
Compressive waves



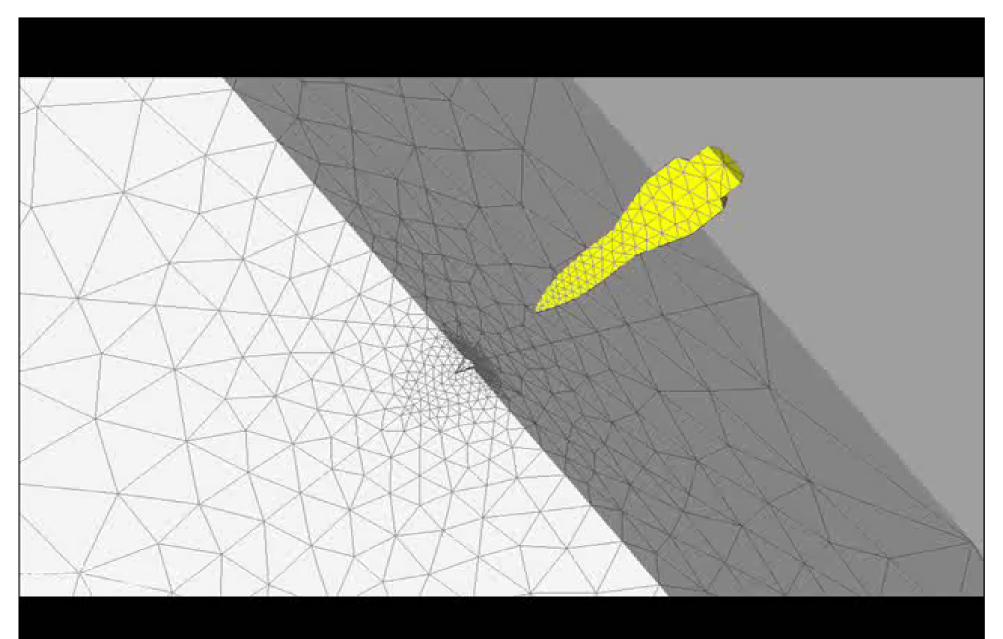
Impact - penetration of nail



Impact - penetration of nail



Impact - penetration of nail



Summary

- With increase of loading rate, resistance and brittleness of the structural response increase and failure mode is rate dependent
- At moderate loading rates the response is controlled by the phenomena at the material micro, however, for higher loading rates inertia forces dominate
- At very high loading rates inertia forces dominate & contact mechanics is important part of the problem to be solved (friction & heat)
- There is a strong influence of the structural size on the loading rate response
- The used rate dependent model is simple and covers a broad range of strain rates